Tap the blue circles to see an explanation.
$$ \begin{aligned}2 \cdot \frac{\sqrt{6}}{\sqrt{6}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2\cdot\frac{6}{6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2 \cdot \frac{ 6 : \color{orangered}{ 6 } }{ 6 : \color{orangered}{ 6 }} \xlongequal{ } \\[1 em] & \xlongequal{ }2\cdot\frac{1}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}2\cdot1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}2\end{aligned} $$ | |
① | Multiply in a numerator. $$ \color{blue}{ \sqrt{6} } \cdot \sqrt{6} = 6 $$ Simplify denominator. $$ \color{blue}{ \sqrt{6} } \cdot \sqrt{6} = 6 $$ |
② | Divide both the top and bottom numbers by $ \color{orangered}{ 6 } $. |
③ | Remove 1 from denominator. |
④ | $ 2 \cdot 1 = 2 $ |