Tap the blue circles to see an explanation.
$$ \begin{aligned}2^3\sqrt{64}-6^3\sqrt{27}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2^3\cdot8-6^3\cdot3\sqrt{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}8\cdot8-216\cdot3\sqrt{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}64-216\cdot3\sqrt{3}\end{aligned} $$ | |
① | $$ \sqrt{64} = 8 $$ |
② | $$ \sqrt{27} =
\sqrt{ 3 ^2 \cdot 3 } =
\sqrt{ 3 ^2 } \, \sqrt{ 3 } =
3 \sqrt{ 3 }$$ |
③ | $ 2 ^ 3 = 8 $$ 6 ^ 3 = 216 $ |
④ | $ 8 \cdot 8 = 64 $ |