Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{2}{\sqrt{8}+\sqrt{7}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2}{\sqrt{8}+\sqrt{7}}\frac{\sqrt{8}-\sqrt{7}}{\sqrt{8}-\sqrt{7}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4\sqrt{2}-2\sqrt{7}}{8-2\sqrt{14}+2\sqrt{14}-7} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{4\sqrt{2}-2\sqrt{7}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}4\sqrt{2}-2\sqrt{7}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{8}- \sqrt{7}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 2 } \cdot \left( \sqrt{8}- \sqrt{7}\right) = \color{blue}{2} \cdot \sqrt{8}+\color{blue}{2} \cdot- \sqrt{7} = \\ = 4 \sqrt{2}- 2 \sqrt{7} $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{8} + \sqrt{7}\right) } \cdot \left( \sqrt{8}- \sqrt{7}\right) = \color{blue}{ \sqrt{8}} \cdot \sqrt{8}+\color{blue}{ \sqrt{8}} \cdot- \sqrt{7}+\color{blue}{ \sqrt{7}} \cdot \sqrt{8}+\color{blue}{ \sqrt{7}} \cdot- \sqrt{7} = \\ = 8- 2 \sqrt{14} + 2 \sqrt{14}-7 $$ |
③ | Simplify numerator and denominator |
④ | Remove 1 from denominator. |