Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{12}{\sqrt{52}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \frac{ 12 }{\sqrt{ 52 }} \times \frac{ \color{orangered}{\sqrt{ 52 }} }{ \color{orangered}{\sqrt{ 52 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{12\sqrt{52}}{52} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 12 \sqrt{ 4 \cdot 13 }}{ 52 } \xlongequal{ } \\[1 em] & \xlongequal{ } \frac{ 12 \cdot 2 \sqrt{ 13 } }{ 52 } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{24\sqrt{13}}{52} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}} \frac{ 24 \sqrt{ 13 } : \color{blue}{ 4 } }{ 52 : \color{blue}{ 4 } } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{6\sqrt{13}}{13}\end{aligned} $$ | |
① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 52 }}$. |
② | In denominator we have $ \sqrt{ 52 } \cdot \sqrt{ 52 } = 52 $. |
③ | Simplify $ \sqrt{ 52 } $. |
④ | Divide both the top and bottom numbers by $ \color{blue}{ 4 }$. |