Tap the blue circles to see an explanation.
$$ \begin{aligned}10\sqrt{112}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}10\cdot \sqrt{ 16 \cdot 7 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}10\cdot \sqrt{ 16 } \cdot \sqrt{ 7 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}10\cdot4 \sqrt{ 7 } \xlongequal{ } \\[1 em] & \xlongequal{ }40\sqrt{7}\end{aligned} $$ | |
① | Factor out the largest perfect square of 112. ( in this example we factored out $ 16 $ ) |
② | Rewrite $ \sqrt{ 16 \cdot 7 } $ as the product of two radicals. |
③ | The square root of $ 16 $ is $ 4 $. |