Tap the blue circles to see an explanation.
$$ \begin{aligned}-8\sqrt{392}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-8\cdot \sqrt{ 196 \cdot 2 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-8\cdot \sqrt{ 196 } \cdot \sqrt{ 2 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-8\cdot14 \sqrt{ 2 } \xlongequal{ } \\[1 em] & \xlongequal{ }-112\sqrt{2}\end{aligned} $$ | |
① | Factor out the largest perfect square of 392. ( in this example we factored out $ 196 $ ) |
② | Rewrite $ \sqrt{ 196 \cdot 2 } $ as the product of two radicals. |
③ | The square root of $ 196 $ is $ 14 $. |