Tap the blue circles to see an explanation.
$$ \begin{aligned}\sqrt{7}\cdot(\sqrt{3}+\sqrt{48})& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\sqrt{7}\cdot(\sqrt{3}+4\sqrt{3}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\sqrt{7}\cdot5\sqrt{3} \xlongequal{ } \\[1 em] & \xlongequal{ }5\sqrt{7\cdot3} \xlongequal{ } \\[1 em] & \xlongequal{ }5\sqrt{21}\end{aligned} $$ | |
① | $$ \sqrt{48} =
\sqrt{ 4 ^2 \cdot 3 } =
\sqrt{ 4 ^2 } \, \sqrt{ 3 } =
4 \sqrt{ 3 }$$ |
② | Combine like terms |