Tap the blue circles to see an explanation.
$$ \begin{aligned}(4\sqrt{5}-2)(2\sqrt{5}-5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}40-20\sqrt{5}-4\sqrt{5}+10 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}50-24\sqrt{5}\end{aligned} $$ | |
① | $$ \color{blue}{ \left( 4 \sqrt{5}-2\right) } \cdot \left( 2 \sqrt{5}-5\right) = \color{blue}{ 4 \sqrt{5}} \cdot 2 \sqrt{5}+\color{blue}{ 4 \sqrt{5}} \cdot-5\color{blue}{-2} \cdot 2 \sqrt{5}\color{blue}{-2} \cdot-5 = \\ = 40- 20 \sqrt{5}- 4 \sqrt{5} + 10 $$ |
② | Combine like terms |