Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{3\sqrt{7}}{3\sqrt{11}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3\sqrt{7}}{3\sqrt{11}}\frac{\sqrt{11}}{\sqrt{11}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3\sqrt{77}}{33} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{77}}{11}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{11}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 3 \sqrt{7} } \cdot \sqrt{11} = 3 \sqrt{77} $$ Simplify denominator. $$ \color{blue}{ 3 \sqrt{11} } \cdot \sqrt{11} = 33 $$ |
③ | Divide both numerator and denominator by 3. |