Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\frac{3}{50}}{\frac{4}{50}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{ \frac{3}{50} }{ \frac{ 4 : \color{orangered}{ 2 } }{ 50 : \color{orangered}{ 2 }} } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{\frac{3}{50}}{\frac{2}{25}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3}{4}\end{aligned} $$ | |
① | Divide both the top and bottom numbers by $ \color{orangered}{ 2 } $. |
② | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Cancel down by $ \color{blue}{25} $ $$ \begin{aligned} \frac{ \frac{3}{50} }{ \frac{\color{blue}{2}}{\color{blue}{25}} } & \xlongequal{\text{Step 1}} \frac{3}{50} \cdot \frac{\color{blue}{25}}{\color{blue}{2}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{75 : \color{blue}{25}}{100 : \color{blue}{25}}= \frac{3}{4} \end{aligned} $$ |