Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\frac{2}{5}}{\frac{4}{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{1}{5}}{\frac{2}{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{1}{2}\end{aligned} $$ | |
① | Divide both numerator and denominator by 2. |
② | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Cancel $ \color{red}{ 5 } $ in first and second fraction. Step 3: Multiply numerators and denominators. $$ \begin{aligned} \frac{ \frac{1}{5} }{ \frac{\color{blue}{2}}{\color{blue}{5}} } & \xlongequal{\text{Step 1}} \frac{1}{5} \cdot \frac{\color{blue}{5}}{\color{blue}{2}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{1}{\color{red}{1}} \cdot \frac{\color{red}{1}}{2} = \frac{1}{2} \end{aligned} $$ |