Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\frac{11}{250}}{\frac{11}{50}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\frac{1}{250}}{\frac{1}{50}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{1}{5}\end{aligned} $$ | |
① | Divide both numerator and denominator by 11. |
② | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Cancel down by $ \color{blue}{50} $ $$ \begin{aligned} \frac{ \frac{1}{250} }{ \frac{\color{blue}{1}}{\color{blue}{50}} } & \xlongequal{\text{Step 1}} \frac{1}{250} \cdot \frac{\color{blue}{50}}{\color{blue}{1}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{50 : \color{blue}{50}}{250 : \color{blue}{50}}= \frac{1}{5} \end{aligned} $$ |