Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{-3-2\sqrt{2}}{3-2\sqrt{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{-3-2\sqrt{2}}{3-2\sqrt{5}}\frac{3+2\sqrt{5}}{3+2\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-9-6\sqrt{5}-6\sqrt{2}-4\sqrt{10}}{9+6\sqrt{5}-6\sqrt{5}-20} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-9-6\sqrt{5}-6\sqrt{2}-4\sqrt{10}}{-11} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{9+6\sqrt{5}+6\sqrt{2}+4\sqrt{10}}{11}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 3 + 2 \sqrt{5}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \left( -3- 2 \sqrt{2}\right) } \cdot \left( 3 + 2 \sqrt{5}\right) = \color{blue}{-3} \cdot3\color{blue}{-3} \cdot 2 \sqrt{5}\color{blue}{- 2 \sqrt{2}} \cdot3\color{blue}{- 2 \sqrt{2}} \cdot 2 \sqrt{5} = \\ = -9- 6 \sqrt{5}- 6 \sqrt{2}- 4 \sqrt{10} $$ Simplify denominator. $$ \color{blue}{ \left( 3- 2 \sqrt{5}\right) } \cdot \left( 3 + 2 \sqrt{5}\right) = \color{blue}{3} \cdot3+\color{blue}{3} \cdot 2 \sqrt{5}\color{blue}{- 2 \sqrt{5}} \cdot3\color{blue}{- 2 \sqrt{5}} \cdot 2 \sqrt{5} = \\ = 9 + 6 \sqrt{5}- 6 \sqrt{5}-20 $$ |
③ | Simplify numerator and denominator |
④ | Multiply both numerator and denominator by -1. |