back to index
$$x = 11xx+\frac{44}{2}x$$
Answer
$$ \begin{matrix}x_1 = 0 & x_2 = -\dfrac{ 21 }{ 11 } \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} x &= 11xx+\frac{44}{2}x&& \text{multiply ALL terms by } \color{blue}{ 2 }. \\[1 em]2x &= 211xx+2 \cdot \frac{44}{2}x&& \text{cancel out the denominators} \\[1 em]2x &= 22x^2+44x&& \text{move all terms to the left hand side } \\[1 em]2x-22x^2-44x &= 0&& \text{simplify left side} \\[1 em]-22x^2-42x &= 0&& \\[1 em] \end{aligned} $$
In order to solve $ \color{blue}{ -22x^{2}-42x = 0 } $, first we need to factor our $ x $.
$$ -22x^{2}-42x = x \left( -22x-42 \right) $$
$ x = 0 $ is a root of multiplicity $ 1 $.
The second root can be found by solving equation $ -22x-42 = 0$.
This page was created using
Equations Solver