back to index
$$\frac{x}{8}-\frac{1}{x} = \frac{1}{8}$$
Answer
$$ \begin{matrix}x_1 = \dfrac{ 1 }{ 2 }-\dfrac{\sqrt{ 33 }}{ 2 } & x_2 = \dfrac{ 1 }{ 2 }+\dfrac{\sqrt{ 33 }}{ 2 } \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} \frac{x}{8}-\frac{1}{x} &= \frac{1}{8}&& \text{multiply ALL terms by } \color{blue}{ 8x }. \\[1 em]8x \cdot \frac{x}{8}-8x\cdot\frac{1}{x} &= 8x\cdot\frac{1}{8}&& \text{cancel out the denominators} \\[1 em]x^2-8 &= x&& \text{move all terms to the left hand side } \\[1 em]x^2-8-x &= 0&& \text{simplify left side} \\[1 em]x^2-x-8 &= 0&& \\[1 em] \end{aligned} $$
$ x^{2}-x-8 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Equations Solver