back to index
$$\frac{x}{x+2} = -\frac{2}{(x+2)(x+1)}$$
Answer
$$ \begin{matrix}x_1 = -1 & x_2 = -\dfrac{ 2 }{ 3 } \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} \frac{x}{x+2} &= -\frac{2}{(x+2)(x+1)}&& \text{multiply ALL terms by } \color{blue}{ (x+2)(x+1) }. \\[1 em](x+2)(x+1)\frac{x}{x+2} &= -(x+2)(x+1)\cdot\frac{2}{(x+2)(x+1)}&& \text{cancel out the denominators} \\[1 em]x^2+x &= -(2x^2+4x+2)&& \text{simplify right side} \\[1 em]x^2+x &= -2x^2-4x-2&& \text{move all terms to the left hand side } \\[1 em]x^2+x+2x^2+4x+2 &= 0&& \text{simplify left side} \\[1 em]3x^2+5x+2 &= 0&& \\[1 em] \end{aligned} $$
$ 3x^{2}+5x+2 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Equations Solver