back to index
$$\frac{7}{x}(x+5) = 0$$
Answer
$$ \begin{matrix}x_1 = 0 & x_2 = -5 \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} \frac{7}{x}(x+5) &= 0&& \text{simplify left side} \\[1 em]\frac{7x+35}{x} &= 0&& \text{multiply ALL terms by } \color{blue}{ x }. \\[1 em]x \cdot \frac{7x+35}{x} &= x\cdot0&& \text{cancel out the denominators} \\[1 em]7x^3+35x^2 &= 0&& \\[1 em] \end{aligned} $$
In order to solve $ \color{blue}{ 7x^{3}+35x^{2} = 0 } $, first we need to factor our $ x^2 $.
$$ 7x^{3}+35x^{2} = x^2 \left( 7x+35 \right) $$
$ x = 0 $ is a root of multiplicity $ 2 $.
The second root can be found by solving equation $ 7x+35 = 0$.
This page was created using
Equations Solver