back to index
$$\frac{7}{4x}-\frac{3}{x^2} = \frac{1}{2x^2}$$
Answer
$$ \begin{matrix}x_1 = \dfrac{ 7 }{ 4 }+\dfrac{\sqrt{ 47 }}{ 4 }i & x_2 = \dfrac{ 7 }{ 4 }-\dfrac{\sqrt{ 47 }}{ 4 }i \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} \frac{7}{4x}-\frac{3}{x^2} &= \frac{1}{2x^2}&& \text{multiply ALL terms by } \color{blue}{ 4xx^2\cdot2 }. \\[1 em]4xx^2\cdot2\cdot\frac{7}{4x}-4xx^2\cdot2\cdot\frac{3}{x^2} &= 4xx^2\cdot2\cdot\frac{1}{2x^2}&& \text{cancel out the denominators} \\[1 em]14-\frac{24}{x^1} &= 4x&& \text{multiply ALL terms by } \color{blue}{ x^1 }. \\[1 em]x^1\cdot14-x^1\cdot\frac{24}{x^1} &= x^1\cdot4x&& \text{cancel out the denominators} \\[1 em]14x-24 &= 4x^2&& \text{move all terms to the left hand side } \\[1 em]14x-24-4x^2 &= 0&& \text{simplify left side} \\[1 em]-4x^2+14x-24 &= 0&& \\[1 em] \end{aligned} $$
$ -4x^{2}+14x-24 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Equations Solver