back to index
$$5x-\frac{\frac{x}{8}}{3}\frac{x}{4} = 0$$
Answer
$$ \begin{matrix}x_1 = 0 & x_2 = 480 \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} 5x-\frac{\frac{x}{8}}{3}\frac{x}{4} &= 0&& \text{multiply ALL terms by } \color{blue}{ 24 }. \\[1 em]24\cdot5x-24 \cdot \frac{\frac{x}{8}}{3}\frac{x}{4} &= 24\cdot0&& \text{cancel out the denominators} \\[1 em]120x-\frac{x}{4}x &= 0&& \text{multiply ALL terms by } \color{blue}{ 4 }. \\[1 em]4\cdot120x-4 \cdot \frac{x}{4}x &= 4\cdot0&& \text{cancel out the denominators} \\[1 em]480x-x^2 &= 0&& \text{simplify left side} \\[1 em]-x^2+480x &= 0&& \\[1 em] \end{aligned} $$
In order to solve $ \color{blue}{ -x^{2}+480x = 0 } $, first we need to factor our $ x $.
$$ -x^{2}+480x = x \left( -x+480 \right) $$
$ x = 0 $ is a root of multiplicity $ 1 $.
The second root can be found by solving equation $ -x+480 = 0$.
This page was created using
Equations Solver