back to index
$$\frac{5}{3}x+\frac{2}{3} = 5+\frac{x}{2}x$$
Answer
$$ \begin{matrix}x_1 = \dfrac{ 5 }{ 3 }+\dfrac{\sqrt{ 53 }}{ 3 }i & x_2 = \dfrac{ 5 }{ 3 }-\dfrac{\sqrt{ 53 }}{ 3 }i \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} \frac{5}{3}x+\frac{2}{3} &= 5+\frac{x}{2}x&& \text{multiply ALL terms by } \color{blue}{ 6 }. \\[1 em]6 \cdot \frac{5}{3}x+6\cdot\frac{2}{3} &= 6\cdot5+6 \cdot \frac{x}{2}x&& \text{cancel out the denominators} \\[1 em]10x+4 &= 30+3x^2&& \text{simplify right side} \\[1 em]10x+4 &= 3x^2+30&& \text{move all terms to the left hand side } \\[1 em]10x+4-3x^2-30 &= 0&& \text{simplify left side} \\[1 em]-3x^2+10x-26 &= 0&& \\[1 em] \end{aligned} $$
$ -3x^{2}+10x-26 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Equations Solver