back to index
$$3x-\frac{9}{x}+9 = 50$$
Answer
$$ \begin{matrix}x_1 = \dfrac{ 41 }{ 6 }-\dfrac{\sqrt{ 1789 }}{ 6 } & x_2 = \dfrac{ 41 }{ 6 }+\dfrac{\sqrt{ 1789 }}{ 6 } \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} 3x-\frac{9}{x}+9 &= 50&& \text{multiply ALL terms by } \color{blue}{ x }. \\[1 em]x\cdot3x-x\cdot\frac{9}{x}+x\cdot9 &= x\cdot50&& \text{cancel out the denominators} \\[1 em]3x^2-9+9x &= 50x&& \text{simplify left side} \\[1 em]3x^2+9x-9 &= 50x&& \text{move all terms to the left hand side } \\[1 em]3x^2+9x-9-50x &= 0&& \text{simplify left side} \\[1 em]3x^2-41x-9 &= 0&& \\[1 em] \end{aligned} $$
$ 3x^{2}-41x-9 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Equations Solver