back to index
$$\frac{3}{6}x-5\frac{x}{10}x^3 = 0$$
Answer
$$ \begin{matrix}x_1 = 0 & x_2 = 1 \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} \frac{3}{6}x-5\frac{x}{10}x^3 &= 0&& \text{multiply ALL terms by } \color{blue}{ 30 }. \\[1 em]30 \cdot \frac{3}{6}x-305\frac{x}{10}x^3 &= 30\cdot0&& \text{cancel out the denominators} \\[1 em]15x-15x^2 &= 0&& \text{simplify left side} \\[1 em]-15x^2+15x &= 0&& \\[1 em] \end{aligned} $$
In order to solve $ \color{blue}{ -15x^{2}+15x = 0 } $, first we need to factor our $ x $.
$$ -15x^{2}+15x = x \left( -15x+15 \right) $$
$ x = 0 $ is a root of multiplicity $ 1 $.
The second root can be found by solving equation $ -15x+15 = 0$.
This page was created using
Equations Solver