back to index
$$2 \cdot \frac{x}{x-2} = \frac{30}{x+4}$$
Answer
$$ \begin{matrix}x_1 = 5 & x_2 = 6 \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} 2 \cdot \frac{x}{x-2} &= \frac{30}{x+4}&& \text{multiply ALL terms by } \color{blue}{ (x-2)(x+4) }. \\[1 em](x-2)(x+4)\cdot2 \cdot \frac{x}{x-2} &= (x-2)(x+4)\cdot\frac{30}{x+4}&& \text{cancel out the denominators} \\[1 em]2x^2+8x &= 30x-60&& \text{move all terms to the left hand side } \\[1 em]2x^2+8x-30x+60 &= 0&& \text{simplify left side} \\[1 em]2x^2-22x+60 &= 0&& \\[1 em] \end{aligned} $$
$ 2x^{2}-22x+60 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Equations Solver