back to index
$$\frac{2}{p^2} = \frac{4}{20}-6p$$
Answer
$$ \begin{matrix}p_1 = -0.68243 & p_2 = 0.35788+0.60031i & p_3 = 0.35788-0.60031i \end{matrix} $$
Explanation
$$ \begin{aligned} \frac{2}{p^2} &= \frac{4}{20}-6p&& \text{multiply ALL terms by } \color{blue}{ p^2\cdot20 }. \\[1 em]p^2\cdot20\cdot\frac{2}{p^2} &= p^2\cdot20\cdot\frac{4}{20}-p^2\cdot20\cdot6p&& \text{cancel out the denominators} \\[1 em]40 &= 4p^2-120p^3&& \text{simplify right side} \\[1 em]40 &= -120p^3+4p^2&& \text{move all terms to the left hand side } \\[1 em]40+120p^3-4p^2 &= 0&& \text{simplify left side} \\[1 em]120p^3-4p^2+40 &= 0&& \\[1 em] \end{aligned} $$
This polynomial has no rational roots that can be found using Rational Root Test.
Roots were found using qubic formulas.
This page was created using
Equations Solver