$$ \begin{aligned} \frac{2}{x^2-x-20}+\frac{3}{x^2+7x+12} &= 0&& \text{multiply ALL terms by } \color{blue}{ (x^2-x-20)(x^2+7x+12) }. \\[1 em](x^2-x-20)(x^2+7x+12)\cdot\frac{2}{x^2-x-20}+(x^2-x-20)(x^2+7x+12)\cdot\frac{3}{x^2+7x+12} &= (x^2-x-20)(x^2+7x+12)\cdot0&& \text{cancel out the denominators} \\[1 em]2x^2+14x+24+3x^2-3x-60 &= 0&& \text{simplify left side} \\[1 em]5x^2+11x-36 &= 0&& \\[1 em] \end{aligned} $$
$ 5x^{2}+11x-36 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Equations Solver