back to index
$$-3(x+4)^2-1 = 0$$
Answer
$$ \begin{matrix}x_1 = -4+\dfrac{\sqrt{ 3 }}{ 3 }i & x_2 = -4-\dfrac{\sqrt{ 3 }}{ 3 }i \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} -3(x+4)^2-1 &= 0&& \text{simplify left side} \\[1 em]-3(x^2+8x+16)-1 &= 0&& \\[1 em]-(3x^2+24x+48)-1 &= 0&& \\[1 em]-3x^2-24x-48-1 &= 0&& \\[1 em]-3x^2-24x-49 &= 0&& \\[1 em] \end{aligned} $$
$ -3x^{2}-24x-49 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Equations Solver