back to index
$$-3(x-6)\cdot2x-2 = 0$$
Answer
$$ \begin{matrix}x_1 = 3-\dfrac{\sqrt{ 78 }}{ 3 } & x_2 = 3+\dfrac{\sqrt{ 78 }}{ 3 } \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} -3(x-6)\cdot2x-2 &= 0&& \text{simplify left side} \\[1 em]-(3x-18)\cdot2x-2 &= 0&& \\[1 em]-(6x-36)x-2 &= 0&& \\[1 em]-(6x^2-36x)-2 &= 0&& \\[1 em]-6x^2+36x-2 &= 0&& \\[1 em] \end{aligned} $$
$ -6x^{2}+36x-2 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Equations Solver