back to index
$$(x-6)(x+6) = 13$$
Answer
$$ \begin{matrix}x_1 = 7 & x_2 = -7 \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} (x-6)(x+6) &= 13&& \text{simplify left side} \\[1 em]x^2+6x-6x-36 &= 13&& \\[1 em]x^2+6x-6x-36 &= 13&& \\[1 em]x^2-36 &= 13&& \text{move all terms to the left hand side } \\[1 em]x^2-36-13 &= 0&& \text{simplify left side} \\[1 em]x^2-49 &= 0&& \\[1 em] \end{aligned} $$
$ x^{2}-49 = 0 $ is a quadratic equation.
You can use step-by-step quadratic equation solver to see a detailed explanation on how to solve this equation.
This page was created using
Equations Solver