back to index
$$\frac{x-4}{6x} = \frac{x+1}{5x}$$
Answer
$$ \begin{matrix}x_1 = 0 & x_2 = -26 \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} \frac{x-4}{6x} &= \frac{x+1}{5x}&& \text{multiply ALL terms by } \color{blue}{ 6x\cdot5 }. \\[1 em]6x\cdot5 \cdot \frac{x-4}{6x} &= 6x\cdot5 \cdot \frac{x+1}{5x}&& \text{cancel out the denominators} \\[1 em]5x^3-20x^2 &= 6x^3+6x^2&& \text{move all terms to the left hand side } \\[1 em]5x^3-20x^2-6x^3-6x^2 &= 0&& \text{simplify left side} \\[1 em]-x^3-26x^2 &= 0&& \\[1 em] \end{aligned} $$
In order to solve $ \color{blue}{ -x^{3}-26x^{2} = 0 } $, first we need to factor our $ x^2 $.
$$ -x^{3}-26x^{2} = x^2 \left( -x-26 \right) $$
$ x = 0 $ is a root of multiplicity $ 2 $.
The second root can be found by solving equation $ -x-26 = 0$.
This page was created using
Equations Solver