back to index
$$\frac{x-1}{5x} = \frac{x+4}{6x}$$
Answer
$$ \begin{matrix}x_1 = 0 & x_2 = 26 \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} \frac{x-1}{5x} &= \frac{x+4}{6x}&& \text{multiply ALL terms by } \color{blue}{ 5x\cdot6 }. \\[1 em]5x\cdot6 \cdot \frac{x-1}{5x} &= 5x\cdot6 \cdot \frac{x+4}{6x}&& \text{cancel out the denominators} \\[1 em]6x^3-6x^2 &= 5x^3+20x^2&& \text{move all terms to the left hand side } \\[1 em]6x^3-6x^2-5x^3-20x^2 &= 0&& \text{simplify left side} \\[1 em]x^3-26x^2 &= 0&& \\[1 em] \end{aligned} $$
In order to solve $ \color{blue}{ x^{3}-26x^{2} = 0 } $, first we need to factor our $ x^2 $.
$$ x^{3}-26x^{2} = x^2 \left( x-26 \right) $$
$ x = 0 $ is a root of multiplicity $ 2 $.
The second root can be found by solving equation $ x-26 = 0$.
This page was created using
Equations Solver