$ \color{blue}{ 20x^{3}-30x^{2}-80x-30 } $ is a polynomial of degree 3. To find zeros for polynomials of degree 3 or higher we use Rational Root Test.
The Rational Root Theorem tells you that if the polynomial has a rational zero then it must be a fraction $ \dfrac{p}{q} $, where p is a factor of the trailing constant and q is a factor of the leading coefficient.
The factors of the leading coefficient ( 20 ) are 1 2 4 5 10 20 .The factors of the constant term (-30) are 1 2 3 5 6 10 15 30 . Then the Rational Roots Tests yields the following possible solutions:
$$ \pm \frac{ 1 }{ 1 } , ~ \pm \frac{ 1 }{ 2 } , ~ \pm \frac{ 1 }{ 4 } , ~ \pm \frac{ 1 }{ 5 } , ~ \pm \frac{ 1 }{ 10 } , ~ \pm \frac{ 1 }{ 20 } , ~ \pm \frac{ 2 }{ 1 } , ~ \pm \frac{ 2 }{ 2 } , ~ \pm \frac{ 2 }{ 4 } , ~ \pm \frac{ 2 }{ 5 } , ~ \pm \frac{ 2 }{ 10 } , ~ \pm \frac{ 2 }{ 20 } , ~ \pm \frac{ 3 }{ 1 } , ~ \pm \frac{ 3 }{ 2 } , ~ \pm \frac{ 3 }{ 4 } , ~ \pm \frac{ 3 }{ 5 } , ~ \pm \frac{ 3 }{ 10 } , ~ \pm \frac{ 3 }{ 20 } , ~ \pm \frac{ 5 }{ 1 } , ~ \pm \frac{ 5 }{ 2 } , ~ \pm \frac{ 5 }{ 4 } , ~ \pm \frac{ 5 }{ 5 } , ~ \pm \frac{ 5 }{ 10 } , ~ \pm \frac{ 5 }{ 20 } , ~ \pm \frac{ 6 }{ 1 } , ~ \pm \frac{ 6 }{ 2 } , ~ \pm \frac{ 6 }{ 4 } , ~ \pm \frac{ 6 }{ 5 } , ~ \pm \frac{ 6 }{ 10 } , ~ \pm \frac{ 6 }{ 20 } , ~ \pm \frac{ 10 }{ 1 } , ~ \pm \frac{ 10 }{ 2 } , ~ \pm \frac{ 10 }{ 4 } , ~ \pm \frac{ 10 }{ 5 } , ~ \pm \frac{ 10 }{ 10 } , ~ \pm \frac{ 10 }{ 20 } , ~ \pm \frac{ 15 }{ 1 } , ~ \pm \frac{ 15 }{ 2 } , ~ \pm \frac{ 15 }{ 4 } , ~ \pm \frac{ 15 }{ 5 } , ~ \pm \frac{ 15 }{ 10 } , ~ \pm \frac{ 15 }{ 20 } , ~ \pm \frac{ 30 }{ 1 } , ~ \pm \frac{ 30 }{ 2 } , ~ \pm \frac{ 30 }{ 4 } , ~ \pm \frac{ 30 }{ 5 } , ~ \pm \frac{ 30 }{ 10 } , ~ \pm \frac{ 30 }{ 20 } ~ $$Substitute the POSSIBLE roots one by one into the polynomial to find the actual roots. Start first with the whole numbers.
If we plug these values into the polynomial $ P(x) $, we obtain $ P(-1) = 0 $.
To find remaining zeros we use Factor Theorem. This theorem states that if $\frac{p}{q}$ is root of the polynomial then this polynomial can be divided with $ \color{blue}{q x - p} $. In this example:
Divide $ P(x) $ with $ \color{blue}{x + 1} $
$$ \frac{ 20x^{3}-30x^{2}-80x-30 }{ \color{blue}{ x + 1 } } = 20x^{2}-50x-30 $$Polynomial $ 20x^{2}-50x-30 $ can be used to find the remaining roots.
$ \color{blue}{ 20x^{2}-50x-30 } $ is a second degree polynomial. For a detailed answer how to find its roots you can use step-by-step quadratic equation solver.