back to index
$$\frac{2}{5}x\cdot\frac{8}{5}(x-7) = 0$$
Answer
$$ \begin{matrix}x_1 = 0 & x_2 = 7 \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} \frac{2}{5}x\cdot\frac{8}{5}(x-7) &= 0&& \text{simplify left side} \\[1 em]\frac{2x}{5}\cdot\frac{8}{5}(x-7) &= 0&& \\[1 em]\frac{16x}{25}(x-7) &= 0&& \\[1 em]\frac{16x^2-112x}{25} &= 0&& \text{multiply ALL terms by } \color{blue}{ 25 }. \\[1 em]25 \cdot \frac{16x^2-112x}{25} &= 25\cdot0&& \text{cancel out the denominators} \\[1 em]16x^2-112x &= 0&& \\[1 em] \end{aligned} $$
In order to solve $ \color{blue}{ 16x^{2}-112x = 0 } $, first we need to factor our $ x $.
$$ 16x^{2}-112x = x \left( 16x-112 \right) $$
$ x = 0 $ is a root of multiplicity $ 1 $.
The second root can be found by solving equation $ 16x-112 = 0$.
This page was created using
Equations Solver