back to index
$$(100-\frac{200}{x})\cdot200 = 0$$
Answer
$$ \begin{matrix}x_1 = 0 & x_2 = 2 \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} (100-\frac{200}{x})\cdot200 &= 0&& \text{simplify left side} \\[1 em]\frac{100x-200}{x}\cdot200 &= 0&& \\[1 em]\frac{20000x-40000}{x} &= 0&& \text{multiply ALL terms by } \color{blue}{ x }. \\[1 em]x \cdot \frac{20000x-40000}{x} &= x\cdot0&& \text{cancel out the denominators} \\[1 em]20000x^3-40000x^2 &= 0&& \\[1 em] \end{aligned} $$
In order to solve $ \color{blue}{ 20000x^{3}-40000x^{2} = 0 } $, first we need to factor our $ x^2 $.
$$ 20000x^{3}-40000x^{2} = x^2 \left( 20000x-40000 \right) $$
$ x = 0 $ is a root of multiplicity $ 2 $.
The second root can be found by solving equation $ 20000x-40000 = 0$.
This page was created using
Equations Solver