back to index
$$\frac{(x+10)(x+20)}{(x+30)(x^2-20x+200)} = 0$$
Answer
$$ \begin{matrix}x_1 = -10 & x_2 = -20 & x_3 = 10+10i \\[1 em] x_4 = 10-10i & \\[1 em] \end{matrix} $$
Explanation
$$ \begin{aligned} \frac{(x+10)(x+20)}{(x+30)(x^2-20x+200)} &= 0&& \text{multiply ALL terms by } \color{blue}{ (x+30)(x^2-20x+200) }. \\[1 em](x+30)(x^2-20x+200)\frac{(x+10)(x+20)}{(x+30)(x^2-20x+200)} &= (x+30)(x^2-20x+200)\cdot0&& \text{cancel out the denominators} \\[1 em]x^6-10x^5-200x^4+8000x^3-40000x^2-400000x+8000000 &= 0&& \\[1 em] \end{aligned} $$
This page was created using
Equations Solver