STEP 1: find angle $ \alpha $
To find angle $ \alpha $ use formula:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ d_2 }{ d_1 } $$After substituting $ d_2 = 25 $ and $ d_1 = 56 $ we have:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ 25 }{ 56 } $$ $$ \sin \left( \frac{ \alpha }{ 2 } \right) = \frac{ 25 }{ 56 } $$ $$ \frac{ \alpha }{ 2 } = \arcsin\left( \frac{ 25 }{ 56 } \right) $$ $$ \frac{ \alpha }{ 2 } = 26.5148^o $$$$ \alpha = 26.5148^o \cdot 2 $$$$ \alpha = 53.0295^o $$STEP 2: find angle $ \beta $
To find angle $ \beta $ use formula:
$$ \alpha + \beta = 90^o $$After substituting $ \alpha = 53.0295^o $ we have:
$$ 53.0295^o + \beta = 90^o $$ $$ \beta = 90^o - 53.0295^o $$ $$ \beta = 36.9705^o $$