STEP 1: find angle $ \alpha $
To find angle $ \alpha $ use formula:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ d_2 }{ d_1 } $$After substituting $ d_2 = 1567 $ and $ d_1 = 1573 $ we have:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ 1567 }{ 1573 } $$ $$ \sin \left( \frac{ \alpha }{ 2 } \right) = \frac{ 1567 }{ 1573 } $$ $$ \frac{ \alpha }{ 2 } = \arcsin\left( \frac{ 1567 }{ 1573 } \right) $$ $$ \frac{ \alpha }{ 2 } = 84.994^o $$$$ \alpha = 84.994^o \cdot 2 $$$$ \alpha = 169.9881^o $$STEP 2: find angle $ \beta $
To find angle $ \beta $ use formula:
$$ \alpha + \beta = 90^o $$After substituting $ \alpha = 169.9881^o $ we have:
$$ 169.9881^o + \beta = 90^o $$ $$ \beta = 90^o - 169.9881^o $$ $$ \beta = -79.9881^o $$The result has to be greater than zero. $ \Longrightarrow $ The problem has no solution.