STEP 1: find angle $ \alpha $
To find angle $ \alpha $ use formula:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ d_2 }{ d_1 } $$After substituting $ d_2 = \frac{ 121 }{ 250 } $ and $ d_1 = \frac{ 373 }{ 500 } $ we have:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ \frac{ 121 }{ 250 } }{ \frac{ 373 }{ 500 } } $$ $$ \sin \left( \frac{ \alpha }{ 2 } \right) = \frac{ 242 }{ 373 } $$ $$ \frac{ \alpha }{ 2 } = \arcsin\left( \frac{ 242 }{ 373 } \right) $$ $$ \frac{ \alpha }{ 2 } = 40.4507^o $$$$ \alpha = 40.4507^o \cdot 2 $$$$ \alpha = 80.9014^o $$STEP 2: find angle $ \beta $
To find angle $ \beta $ use formula:
$$ \alpha + \beta = 90^o $$After substituting $ \alpha = 80.9014^o $ we have:
$$ 80.9014^o + \beta = 90^o $$ $$ \beta = 90^o - 80.9014^o $$ $$ \beta = 9.0986^o $$