STEP 1: find side $ a $
To find side $ a $ use formula:
$$ P = 4 \cdot a $$After substituting $ P = 80 $ we have:
$$ 80 = 4 \cdot a $$ $$ a = \dfrac{ 80 }{ 4 } $$ $$ a = 20 $$STEP 2: find diagonal $ d1 $
To find diagonal $ d1 $ use formula:
$$ d_1^2 + d_2^2 = 4 \cdot a^2 $$After substituting $ d_2 = 24 $ and $ a = 20 $ we have:
$$ d_1 ^ {\,2} + 24^2 = 4 \cdot 20^2 $$ $$ d_1 ^ {\,2} + 576 = 1600 $$ $$ d_1 ^ {\,2} = 1600 - 576 $$ $$ d_1 ^ {\,2} = 1024 $$ $$ d_1 = \sqrt{ 1024 } $$$$ d_1 = 32 $$STEP 3: find angle $ \alpha $
To find angle $ \alpha $ use formula:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ d_2 }{ d_1 } $$After substituting $ d_2 = 24 $ and $ d_1 = 32 $ we have:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ 24 }{ 32 } $$ $$ \sin \left( \frac{ \alpha }{ 2 } \right) = \frac{ 3 }{ 4 } $$ $$ \frac{ \alpha }{ 2 } = \arcsin\left( \frac{ 3 }{ 4 } \right) $$ $$ \frac{ \alpha }{ 2 } = 48.5904^o $$$$ \alpha = 48.5904^o \cdot 2 $$$$ \alpha = 97.1808^o $$STEP 4: find angle $ \beta $
To find angle $ \beta $ use formula:
$$ \alpha + \beta = 90^o $$After substituting $ \alpha = 97.1808^o $ we have:
$$ 97.1808^o + \beta = 90^o $$ $$ \beta = 90^o - 97.1808^o $$ $$ \beta = -7.1808^o $$The result has to be greater than zero. $ \Longrightarrow $ The problem has no solution.