STEP 1: find diagonal $ d1 $
To find diagonal $ d1 $ use formula:
$$ d_1^2 + d_2^2 = 4 \cdot a^2 $$After substituting $ d_2 = 2 $ and $ a = 2 $ we have:
$$ d_1 ^ {\,2} + 2^2 = 4 \cdot 2^2 $$ $$ d_1 ^ {\,2} + 4 = 16 $$ $$ d_1 ^ {\,2} = 16 - 4 $$ $$ d_1 ^ {\,2} = 12 $$ $$ d_1 = \sqrt{ 12 } $$$$ d_1 = 2 \sqrt{ 3 } $$STEP 2: find angle $ \alpha $
To find angle $ \alpha $ use formula:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ d_2 }{ d_1 } $$After substituting $ d_2 = 2 $ and $ d_1 = 2 \sqrt{ 3 } $ we have:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ 2 }{ 2 \sqrt{ 3 } } $$ $$ \sin \left( \frac{ \alpha }{ 2 } \right) = \frac{\sqrt{ 3 }}{ 3 } $$ $$ \frac{ \alpha }{ 2 } = \arcsin\left( \frac{\sqrt{ 3 }}{ 3 } \right) $$ $$ \frac{ \alpha }{ 2 } = 35.2644^o $$$$ \alpha = 35.2644^o \cdot 2 $$$$ \alpha = 70.5288^o $$STEP 3: find angle $ \beta $
To find angle $ \beta $ use formula:
$$ \alpha + \beta = 90^o $$After substituting $ \alpha = 70.5288^o $ we have:
$$ 70.5288^o + \beta = 90^o $$ $$ \beta = 90^o - 70.5288^o $$ $$ \beta = 19.4712^o $$