STEP 1: find diagonal $ d2 $
To find diagonal $ d2 $ use formula:
$$ A = \dfrac{ d_1 \cdot d_2 }{ 2 } $$After substituting $ A = 143 $ and $ d_1 = 26 $ we have:
$$ 143 = \dfrac{ 26 \cdot d_2 }{ 2 } $$$$ 143 \cdot 2 = 26 \cdot d_2 $$$$ 286 = 26 \cdot d_2 $$$$ d_2 = \dfrac{ 286 }{ 26 } $$$$ d_2 = 11 $$STEP 2: find angle $ \alpha $
To find angle $ \alpha $ use formula:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ d_2 }{ d_1 } $$After substituting $ d_2 = 11 $ and $ d_1 = 26 $ we have:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ 11 }{ 26 } $$ $$ \sin \left( \frac{ \alpha }{ 2 } \right) = \frac{ 11 }{ 26 } $$ $$ \frac{ \alpha }{ 2 } = \arcsin\left( \frac{ 11 }{ 26 } \right) $$ $$ \frac{ \alpha }{ 2 } = 25.029^o $$$$ \alpha = 25.029^o \cdot 2 $$$$ \alpha = 50.058^o $$STEP 3: find height $ h $
To find height $ h $ use formula:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ h }{ d_1 } $$After substituting $ \alpha = 25.029 $ and $ d_1 = 26 $ we have:
$$ \sin \left( \frac{ 50.058^o }{ 2 } \right) = \dfrac{ h }{ 26 } $$ $$ \sin( 25.029 ) = \dfrac{ h }{ 26 } $$ $$ 0.4231 = \dfrac{ h }{ 26 } $$$$ h = 0.4231 \cdot 26 $$$$ h = 11 $$