STEP 1: find side $ a $
To find side $ a $ use formula:
$$ P = 4 \cdot a $$After substituting $ P = 72 $ we have:
$$ 72 = 4 \cdot a $$ $$ a = \dfrac{ 72 }{ 4 } $$ $$ a = 18 $$STEP 2: find height $ h $
To find height $ h $ use formula:
$$ A = a \cdot h $$After substituting $ A = 120 $ and $ a = 18 $ we have:
$$ 120 = 18 \cdot h $$$$ h = \dfrac{ 120 }{ 18 } $$$$ h = \frac{ 20 }{ 3 } $$STEP 3: find angle $ \alpha $
To find angle $ \alpha $ use formula:
$$ \sin \left( \alpha \right) = \dfrac{ h }{ a } $$After substituting $ h = \frac{ 20 }{ 3 } $ and $ a = 18 $ we have:
$$ \sin \left( \alpha \right) = \dfrac{ \frac{ 20 }{ 3 } }{ 18 } $$ $$ \sin \left( \alpha \right) = \frac{ 10 }{ 27 } $$ $$ \alpha = \arcsin\left( \frac{ 10 }{ 27 } \right) $$ $$ \alpha = 21.7385^o $$STEP 4: find angle $ \beta $
To find angle $ \beta $ use formula:
$$ \alpha + \beta = 90^o $$After substituting $ \alpha = 21.7385^o $ we have:
$$ 21.7385^o + \beta = 90^o $$ $$ \beta = 90^o - 21.7385^o $$ $$ \beta = 68.2615^o $$STEP 5: find diagonal $ d2 $
To find diagonal $ d2 $ use formula:
$$ \sin \left( \frac{ \beta }{ 2 } \right) = \dfrac{ h }{ d_2 } $$After substituting $ \beta = 34.1308 $ and $ h = \frac{ 20 }{ 3 } $ we have:
$$ \sin \left( \frac{ 68.2615^o }{ 2 } \right) = \dfrac{ h }{ } $$ $$ \sin( 34.1308 ) = \dfrac{ \frac{ 20 }{ 3 } }{ d_2 } $$ $$ 0.5611 = \dfrac{ \frac{ 20 }{ 3 } }{ d_2 } $$ $$ d_2 = \dfrac{ \frac{ 20 }{ 3 } }{ 0.5611 } $$ $$ d_2 = 11.8818 $$