To find diagonal $ d2 $ use formula:
$$ d_1^2 + d_2^2 = 4 \cdot a^2 $$After substituting $ d_1 = 24 $ and $ a = 30 $ we have:
$$ 24^2 + d_2^2 = 4 \cdot 30^2 $$ $$ 576 + d_2^2 = 3600 $$ $$ d_2^2 = 3600 - 576 $$ $$ d_2^2 = 3024 $$ $$ d_2 = \sqrt{ 3024 } $$$$ d_2 = 12 \sqrt{ 21 } $$