STEP 1: find angle $ \beta $
To find angle $ \beta $ use formula:
$$ \alpha + \beta = 90^o $$After substituting $ \alpha = 60^o $ we have:
$$ 60^o + \beta = 90^o $$ $$ \beta = 90^o - 60^o $$ $$ \beta = 30^o $$STEP 2: find height $ h $
To find height $ h $ use formula:
$$ \sin \left( \alpha \right) = \dfrac{ h }{ a } $$After substituting $ \alpha = 60^o $ and $ a = \frac{ 15 }{ 8 } $ we have:
$$ \sin( 60^o ) = \dfrac{ h }{ \frac{ 15 }{ 8 } } $$ $$ \frac{\sqrt{ 3 }}{ 2 } = \dfrac{ h }{ \frac{ 15 }{ 8 } } $$$$ h = \frac{\sqrt{ 3 }}{ 2 } \cdot \frac{ 15 }{ 8 } $$$$ h = \frac{ 15 \sqrt{ 3}}{ 16 } $$STEP 3: find diagonal $ d2 $
To find diagonal $ d2 $ use formula:
$$ \sin \left( \frac{ \beta }{ 2 } \right) = \dfrac{ h }{ d_2 } $$After substituting $ \beta = 15^o $ and $ h = \frac{ 15 \sqrt{ 3}}{ 16 } $ we have:
$$ \sin \left( \frac{ 30^o }{ 2 } \right) = \dfrac{ h }{ } $$ $$ \sin( 15^o ) = \dfrac{ \frac{ 15 \sqrt{ 3}}{ 16 } }{ d_2 } $$ $$ 0.2588 = \dfrac{ \frac{ 15 \sqrt{ 3}}{ 16 } }{ d_2 } $$ $$ d_2 = \dfrac{ \frac{ 15 \sqrt{ 3}}{ 16 } }{ 0.2588 } $$ $$ d_2 = 6.2739 $$