STEP 1: find height $ h $
To find height $ h $ use formula:
$$ \sin \left( \alpha \right) = \dfrac{ h }{ a } $$After substituting $ \alpha = 45^o $ and $ a = 6 $ we have:
$$ \sin( 45^o ) = \dfrac{ h }{ 6 } $$ $$ \frac{\sqrt{ 2 }}{ 2 } = \dfrac{ h }{ 6 } $$$$ h = \frac{\sqrt{ 2 }}{ 2 } \cdot 6 $$$$ h = 3 \sqrt{ 2 } $$STEP 2: find diagonal $ d1 $
To find diagonal $ d1 $ use formula:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ h }{ d_1 } $$After substituting $ \alpha = \frac{ 45 }{ 2 }^o $ and $ h = 3 \sqrt{ 2 } $ we have:
$$ \sin \left( \frac{ 45^o }{ 2 } \right) = \dfrac{ h }{ } $$ $$ \sin( \frac{ 45 }{ 2 }^o ) = \dfrac{ 3 \sqrt{ 2 } }{ d_1 } $$ $$ 0.3827 = \dfrac{ 3 \sqrt{ 2 } }{ d_1 } $$ $$ d_1 = \dfrac{ 3 \sqrt{ 2 } }{ 0.3827 } $$ $$ d_1 = 11.0866 $$