STEP 1: find height $ h $
To find height $ h $ use formula:
$$ \sin \left( \alpha \right) = \dfrac{ h }{ a } $$After substituting $ \alpha = 30^o $ and $ a = \frac{ 27 }{ 5 } $ we have:
$$ \sin( 30^o ) = \dfrac{ h }{ \frac{ 27 }{ 5 } } $$ $$ \frac{ 1 }{ 2 } = \dfrac{ h }{ \frac{ 27 }{ 5 } } $$$$ h = \frac{ 1 }{ 2 } \cdot \frac{ 27 }{ 5 } $$$$ h = \frac{ 27 }{ 10 } $$STEP 2: find diagonal $ d1 $
To find diagonal $ d1 $ use formula:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ h }{ d_1 } $$After substituting $ \alpha = 15^o $ and $ h = \frac{ 27 }{ 10 } $ we have:
$$ \sin \left( \frac{ 30^o }{ 2 } \right) = \dfrac{ h }{ } $$ $$ \sin( 15^o ) = \dfrac{ \frac{ 27 }{ 10 } }{ d_1 } $$ $$ 0.2588 = \dfrac{ \frac{ 27 }{ 10 } }{ d_1 } $$ $$ d_1 = \dfrac{ \frac{ 27 }{ 10 } }{ 0.2588 } $$ $$ d_1 = 10.432 $$