STEP 1: find height $ h $
To find height $ h $ use formula:
$$ \sin \left( \alpha \right) = \dfrac{ h }{ a } $$After substituting $ \alpha = 67^o $ and $ a = 13 $ we have:
$$ \sin( 67^o ) = \dfrac{ h }{ 13 } $$ $$ 0.9205 = \dfrac{ h }{ 13 } $$$$ h = 0.9205 \cdot 13 $$$$ h = 11.9666 $$STEP 2: find diagonal $ d1 $
To find diagonal $ d1 $ use formula:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ h }{ d_1 } $$After substituting $ \alpha = \frac{ 67 }{ 2 }^o $ and $ h = 11.9666 $ we have:
$$ \sin \left( \frac{ 67^o }{ 2 } \right) = \dfrac{ h }{ } $$ $$ \sin( \frac{ 67 }{ 2 }^o ) = \dfrac{ 11.9666 }{ d_1 } $$ $$ 0.5519 = \dfrac{ 11.9666 }{ d_1 } $$ $$ d_1 = \dfrac{ 11.9666 }{ 0.5519 } $$ $$ d_1 = 21.681 $$