STEP 1: find angle $ \alpha $
To find angle $ \alpha $ use formula:
$$ \alpha + \beta = 90^o $$After substituting $ \beta = 30^o $ we have:
$$ \alpha + 30^o = 90^o $$ $$ \alpha = 90^o - 30^o $$ $$ \alpha = 60^o $$STEP 2: find height $ h $
To find height $ h $ use formula:
$$ \sin \left( \frac{ \alpha }{ 2 } \right) = \dfrac{ h }{ d_1 } $$After substituting $ \alpha = 30^o $ and $ d_1 = 3 $ we have:
$$ \sin \left( \frac{ 60^o }{ 2 } \right) = \dfrac{ h }{ 3 } $$ $$ \sin( 30^o ) = \dfrac{ h }{ 3 } $$ $$ \frac{ 1 }{ 2 } = \dfrac{ h }{ 3 } $$$$ h = \frac{ 1 }{ 2 } \cdot 3 $$$$ h = \frac{ 3 }{ 2 } $$STEP 3: find side $ a $
To find side $ a $ use formula:
$$ \sin \left( \alpha \right) = \dfrac{ h }{ a } $$After substituting $ \alpha = 60^o $ and $ h = \frac{ 3 }{ 2 } $ we have:
$$ \sin( 60^o ) = \dfrac{ \frac{ 3 }{ 2 } }{ a } $$ $$ \frac{\sqrt{ 3 }}{ 2 } = \dfrac{ \frac{ 3 }{ 2 } }{ a } $$ $$ a = \dfrac{ \frac{ 3 }{ 2 } }{ \frac{\sqrt{ 3 }}{ 2 } } $$ $$ a = \sqrt{ 3 } $$STEP 4: find perimeter $ P $
To find perimeter $ P $ use formula:
$$ P = 4 \cdot a $$After substituting $ a = \sqrt{ 3 } $ we have:
$$ P = 4 \cdot \sqrt{ 3 } $$ $$ P = 4 \sqrt{ 3 } $$