STEP 1: find diagonal $ d2 $
To find diagonal $ d2 $ use formula:
$$ A = \dfrac{ d_1 \cdot d_2 }{ 2 } $$After substituting $ A = 42 $ and $ d_1 = 8 $ we have:
$$ 42 = \dfrac{ 8 \cdot d_2 }{ 2 } $$$$ 42 \cdot 2 = 8 \cdot d_2 $$$$ 84 = 8 \cdot d_2 $$$$ d_2 = \dfrac{ 84 }{ 8 } $$$$ d_2 = \frac{ 21 }{ 2 } $$STEP 2: find side $ a $
To find side $ a $ use formula:
$$ d_1^2 + d_2^2 = 4 \cdot a^2 $$After substituting $ d_1 = 8 $ and $ d_2 = \frac{ 21 }{ 2 } $ we have:
$$ 8^2 + \left(\frac{ 21 }{ 2 }\right)^2 = 4 \cdot a^2 $$ $$ 64 + \frac{ 441 }{ 4 } = 4 \cdot a^2 $$ $$ 4 \cdot a^2 = \frac{ 697 }{ 4 } $$ $$ a^2 = \frac{ \frac{ 697 }{ 4 } }{ 4 } $$ $$ a^2 = \frac{ 697 }{ 16 } $$ $$ a = \sqrt{ \frac{ 697 }{ 16 } } $$$$ a = \frac{\sqrt{ 697 }}{ 4 } $$