STEP 1: find diagonal $ d2 $
To find diagonal $ d2 $ use formula:
$$ A = \dfrac{ d_1 \cdot d_2 }{ 2 } $$After substituting $ A = 14 $ and $ d_1 = 7 $ we have:
$$ 14 = \dfrac{ 7 \cdot d_2 }{ 2 } $$$$ 14 \cdot 2 = 7 \cdot d_2 $$$$ 28 = 7 \cdot d_2 $$$$ d_2 = \dfrac{ 28 }{ 7 } $$$$ d_2 = 4 $$STEP 2: find side $ a $
To find side $ a $ use formula:
$$ d_1^2 + d_2^2 = 4 \cdot a^2 $$After substituting $ d_1 = 7 $ and $ d_2 = 4 $ we have:
$$ 7^2 + 4^2 = 4 \cdot a^2 $$ $$ 49 + 16 = 4 \cdot a^2 $$ $$ 4 \cdot a^2 = 65 $$ $$ a^2 = \frac{ 65 }{ 4 } $$ $$ a^2 = \frac{ 65 }{ 4 } $$ $$ a = \sqrt{ \frac{ 65 }{ 4 } } $$$$ a = \frac{\sqrt{ 65 }}{ 2 } $$