Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{8}+\sqrt{6}}{\sqrt{6}+\sqrt{2}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{8}+\sqrt{6}}{\sqrt{6}+\sqrt{2}}\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}-\sqrt{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4\sqrt{3}-4+6-2\sqrt{3}}{6-2\sqrt{3}+2\sqrt{3}-2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{2\sqrt{3}+2}{4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{\sqrt{3}+1}{2}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{6}- \sqrt{2}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \left( \sqrt{8} + \sqrt{6}\right) } \cdot \left( \sqrt{6}- \sqrt{2}\right) = \color{blue}{ \sqrt{8}} \cdot \sqrt{6}+\color{blue}{ \sqrt{8}} \cdot- \sqrt{2}+\color{blue}{ \sqrt{6}} \cdot \sqrt{6}+\color{blue}{ \sqrt{6}} \cdot- \sqrt{2} = \\ = 4 \sqrt{3}-4 + 6- 2 \sqrt{3} $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{6} + \sqrt{2}\right) } \cdot \left( \sqrt{6}- \sqrt{2}\right) = \color{blue}{ \sqrt{6}} \cdot \sqrt{6}+\color{blue}{ \sqrt{6}} \cdot- \sqrt{2}+\color{blue}{ \sqrt{2}} \cdot \sqrt{6}+\color{blue}{ \sqrt{2}} \cdot- \sqrt{2} = \\ = 6- 2 \sqrt{3} + 2 \sqrt{3}-2 $$ |
③ | Simplify numerator and denominator |
④ | Divide both numerator and denominator by 2. |